ar X iv : m at h - ph / 0 51 00 88 v 1 2 6 O ct 2 00 5 Quasi - Chaplygin Systems and Nonholonimic Rigid Body Dynamics ∗

نویسنده

  • Yuri N. Fedorov
چکیده

We show that the Suslov nonholonomic rigid body problem studied in [10, 13, 26] can be regarded almost everywhere as a generalized Chaplygin system. Furthermore, this provides a new example of a multidimensional nonholonomic system which can be reduced to a Hamiltonian form by means of Chaplygin reducing multiplier. Since we deal with Chaplygin systems in the local sense, the invariant manifolds of the integrable examples are not necessary tori.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h - ph / 0 11 00 12 v 1 9 O ct 2 00 1 Functional Equations and Poincare Invariant Mechanical Systems

We study the following functional equation that has arisen in the context of mechanical systems invariant under the Poincaré algebra:

متن کامل

ar X iv : m at h - ph / 0 30 70 16 v 1 8 J ul 2 00 3 Nonholonomic LR systems as Generalized Chaplygin systems with an Invariant Measure and Geodesic Flows on Homogeneous Spaces ∗

We consider a class of dynamical systems on a Lie group G with a leftinvariant metric and right-invariant nonholonomic constraints (so called LR systems) and show that, under a generic condition on the constraints, such systems can be regarded as generalized Chaplygin systems on the principle bundle G → Q = G/H , H being a Lie subgroup. In contrast to generic Chaplygin systems, the reductions o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008